国产中文字幕乱人伦在线观看,成 人 色综合,竹菊影视欧美日韩一区二区三区四区五区 ,一边摸一边抽搐一进一出视频

股票代碼:800328

MOSFET失效的6大原因分析,建議收藏

2022.03.08

經(jīng)常碰到電源板上MOSFET無法正常工作,首先,要正確測試判斷MOSFET是否失效,然后關鍵是要找到失效背后的原因,并避免再犯同樣的錯誤,本文整理了常見的MOSFET失效的幾大原因,以及如何避免失效的具體措施。

一、雪崩失效(電壓失效)

也就是我們常說的漏源間的BVdss電壓超過MOSFET的額定電壓,并且超過達到了一定的能力從而導致MOSFET失效。

簡單來說MOSFET在電源板上由于母線電壓、變壓器反射電壓、漏感尖峰電壓等等系統(tǒng)電壓疊加在MOSFET漏源之間,導致的一種失效模式。簡而言之就是由于就是MOSFET漏源極的電壓超過其規(guī)定電壓值并達到一定的能量限度而導致的一種常見的失效模式。

雪崩失效的預防措施:

雪崩失效歸根結底是電壓失效,因此預防我們著重從電壓來考慮。具體可以參考以下的方式來處理:

1、合理降額使用,目前行業(yè)內(nèi)的降額一般選取80%-95%的降額,具體情況根據(jù)企業(yè)的保修條款及電路關注點進行選取;

2、合理的變壓器反射電壓;  

3、合理的RCD及TVS吸收電路設計;

4、大電流布線盡量采用粗、短的布局結構,盡量減少布線寄生電感;

5、選擇合理的柵極電阻Rg;

6、在大功率電源中,可以根據(jù)需要適當?shù)募尤隦C減震或齊納二極管進行吸收。

二、SOA失效(電流失效)

SOA失效是指電源在運行時異常的大電流和電壓同時疊加在MOSFET上面,造成瞬時局部發(fā)熱而導致的破壞模式。或者是芯片與散熱器及封裝不能及時達到熱平衡導致熱積累,持續(xù)的發(fā)熱使溫度超過氧化層限制而導致的熱擊穿模式。

1、受限于最大額定電流及脈沖電流;

2、受限于最大節(jié)溫下的RDSON;

3、受限于器件最大的耗散功率;

4、受限于最大單個脈沖電流;

5、擊穿電壓BVDSS限制區(qū)。

我們電源上的MOSFET,只要保證能器件處于上面限制區(qū)的范圍內(nèi),就能有效的規(guī)避由于MOSFET而導致的電源失效問題的產(chǎn)生。

SOA失效的預防措施:

1、確保在最差條件下,MOSFET的所有功率限制條件均在SOA限制線以內(nèi);

2、將OCP功能一定要做精確細致。

在進行OCP點設計時,一般可能會取1.1-1.5倍電流余量的工程師居多,然后就根據(jù)IC的保護電壓比如0.7V開始調(diào)試RSENSE電阻。有些有經(jīng)驗的人會將檢測延遲時間、CISS對OCP實際的影響考慮在內(nèi)。但是此時有個更值得關注的參數(shù),那就是MOSFET的Td(off)。

三、體二極管失效

在橋式、LLC等有用到體二極管進行續(xù)流的拓撲結構中,由于體二極管遭受破壞而導致的失效。

在不同的拓撲、電路中,MOSFET有不同的角色,比如在LLC中,體內(nèi)二極管的速度也是MOSFET可靠性的重要因素。漏源間的體二極管失效和漏源電壓失效很難區(qū)分,因為二極管本身屬于寄生參數(shù)。雖然失效后難以區(qū)分軀體緣由,但是預防電壓及二極管失效的解決辦法存在較大差異,主要結合自己電路來分析。

體二極管失效預防措施:

其實MOS管的D和S本質(zhì)上是對稱的結構,只是溝道的兩個接點。但是由于溝道的開啟和關閉涉及到柵極和襯底之間的電場,那么就需要給襯底一個確定的電位。又因為MOS管只有3個管腳,所以需要把襯底接到另外兩個管腳之一。那么接了襯底的管腳就是S了,沒接襯底的管腳就是D,我們應用時,S的電位往往是穩(wěn)定的。在集成電路中,比如CMOS中或者還有模擬開關中,由于芯片本身有電源管腳,所以那些MOS管的襯底并不和管腳接在一起,而是直接接到電源的VCC或者VEE,這時候D和S就沒有任何區(qū)別了。

四、諧振失效

在并聯(lián)功率MOSFET時未插入柵極電阻而直接連接時發(fā)生的柵極寄生振蕩。高速反復接通、斷開漏極-源極電壓時,在由柵極-漏極電容Cgd(Crss)和柵極引腳電感Lg形成的諧振電路上發(fā)生此寄生振蕩。當諧振條件(ωL=1/ωC)成立時,在柵極-源極間外加遠遠大于驅動電壓Vgs(in)的振動電壓,由于超出柵極-源極間額定電壓導致柵極破壞,或者接通、斷開漏極-源極間電壓時的振動電壓通過柵極-漏極電容Cgd和Vgs波形重疊導致正向反饋,因此可能會由于誤動作引起振蕩破壞。

諧振失效預防措施:

電阻可以抑制振蕩,是因為阻尼的作用。但柵極串接一個小電阻,并非解決振蕩阻尼問題。主要還是驅動電路阻抗匹配的原因,和調(diào)節(jié)功率管開關時間的原因。

五、靜電失效

靜電的基本物理特征為:有吸引或排斥的力量;有電場存在,與大地有電位差;會產(chǎn)生放電電流。這三種情形會對電子元件造成以下影響:

1、元件吸附灰塵,改變線路間的阻抗,影響元件的功能和壽命;

2、因電場或電流破壞元件絕緣層和導體,使元件不能工作(完全破壞);

3、因瞬間的電場軟擊穿或電流產(chǎn)生過熱,使元件受傷,雖然仍能工作,但是壽命受損。

靜電失效的預防措施:

MOS電路輸入端的保護二極管,其導通時電流容限一般為1mA 在可能出現(xiàn)過大瞬態(tài)輸入電流(超過10mA)時,應串接輸入保護電阻。由于初期設計時沒有加入保護電阻,所以這也是MOS管可能擊穿的原因,而通過更換一個內(nèi)部有保護電阻的MOS管應可防止此種失效的發(fā)生。還有由于保護電路吸收的瞬間能量有限,太大的瞬間信號和過高的靜電電壓將使保護電路失去作用。所以焊接時電烙鐵必須可靠接地,以防漏電擊穿器件輸入端,一般使用時,可斷電后利用電烙鐵的余熱進行焊接,并先焊其接地管腳。

六、柵極電壓失效

柵極的異常高壓來源主要有以下3種原因:

1、在生產(chǎn)、運輸、裝配過程中的靜電。

2、由器件及電路寄生參數(shù)在電源系統(tǒng)工作時產(chǎn)生的高壓諧振。

3、在高壓沖擊時,高電壓通過Ggd傳輸?shù)綎艠O(在雷擊測試時,這種原因導致的失效較為常見)。

至于PCB污染等級、電氣間隙及其它高壓擊穿IC后進入柵極等現(xiàn)象就不做過多解釋。

柵極電壓失效的預防措施:

 柵源間的過電壓保護,即如果柵源間的阻抗過高,則漏源間電壓的突變會通過極間電容耦合到柵極而產(chǎn)生相當高的UGS電壓過沖,這一電壓會引起柵極氧化層永久性損壞,  如果是正方向的UGS瞬態(tài)電壓還會導致器件的誤導通。為此要適當降低柵極驅動電路的阻抗,在柵源之間并接阻尼電阻或并接穩(wěn)壓值約20V的穩(wěn)壓管。特別要注意防止柵極開路工作。

其次是漏極間的過電壓防護。如果電路中有電感性負載,則當器件關斷時,漏極電流的突變(di/dt)會產(chǎn)生比電源電壓高的多的漏極電壓過沖,導致器件損壞。應采取穩(wěn)壓管箝位,RC箝位或RC抑制電路等保護措施。

以上就是小編要分享給大家的所有內(nèi)容啦,大家有任何問題可聯(lián)系我們哦~

備注:本文素材來源于網(wǎng)絡,僅作學習與交流,所有觀點屬于原作者,不代表對該觀點表示支持或贊同,如有侵犯到您的權利,請及時聯(lián)系我們刪除。


123456